
  
 
Abstract— Background: Dental caries is a chronic pathological 

condition affecting an estimated 36% of global population in their 
permanent teeth. It is characterized by demineralization of 
hydroxyapatite crystals and destruction of collagen matter in dental 
tissues. Various conventional methods for early detection of dental 
caries are used by dentists all over the world, such as Visible Light- 
Enhanced Techniques, Electronic Conductance Measurements, 
Electrical Impedance Spectroscopy, Digital radiography, Laser 
Fluorescence System and Ultrasound Caries Detector. However, the 
shortcomings of these techniques alarms the need to adopt a better 
method for early detection of caries. 

Objective: The present study provides a systematic review of 
accuracy to use Raman spectroscopy as a method for caries detection 
at an early stage. Absence of sample penetration makes the method 
simple and hence is widely used. 

Methodology: Significant information related to Raman 
spectroscopy has been extracted and utilized in the presentation of 
systematic review paper. Various parameters have been taken into 
account, such as type of Raman spectroscopy, central wavelength, 
optical power, description of the system, scan rate, description of 
Raman micro-spectroscopy, Raman imaging, Raman peak, Peak 
intensities of laser polarization direction, Depolarization ratio and 
polarization anisotropy. 

Results and Discussion: The different research studies use varied 
system and central wavelength range that affects the result of each 
one of them. However, studies by M.T. Kirchner, et.al.(1997), Alex 
C.-T. Ko, et.al. (2006) and Alex C.-T. Ko, et.al. (2008) indicated 
maximum number Raman peak intensities corresponding to different 
functional groups, providing more information than other studies. 

 
Keywords— Dental caries, Artificial intelligence, Raman 

spectroscopy.  

I. INTRODUCTION 
 ental caries (Figure 1), a chronic disease, is a pathologic 
process that affects an estimated 36% of the population 

across the globe in their permanent teeth [1]. It is characterized 
by demineralization of inorganic substance (hydroxyapatite 
crystals) and destruction of organic substance (collagen 
matter) in dental tissues [2]. Two main factors are involved in  
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the pathogenesis of dental caries: bacteria and diet. When the 
dietary source of sucrose is present, the cariogenic bacteria on 
the tooth surface ferments it to produce lactic acid. This lactic 
acid dissolves the hydroxyapatite crystals on the tooth surface 
leading to caries [3]. Although the prevalence of dental caries 
has fallen dramatically over the last few decades, its diagnosis 
still remains a challenging task. 
 

 
Fig. 1: (A) Sound occlusal surface. (B-D) Caries process in different 

stages [4]. 

A. Use of Artificial Intelligence in medical studies 
The human intelligence processes such as learning, reasoning 
and self-correction, when incorporated in computer systems 
constitute simulations, termed as Artificial Intelligence (AI). 
Today, when AI is looked over for various worldly ambitions, 
healthcare applications rank top in funding in last few years 
with use of Machine Learning (ML) [5]. With excitement in 
the investor and research communities, many ML industry 
startups are making efforts to healthcare, significantly. 
Researchers across the globe have come up with various 
applications of ML and also claim for future applications 
which are gaining momentum with appropriate funding and 
research focus [6]. 

B. Current machine learning applications in healthcare 
Disease Identification and diagnosis- In 2015, a report by 
Pharmaceutical Research and Manufacturers of America stated 
that 800 ML generated anti-cancer medicines and vaccines 
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were in trial [7]. Also, IBM Watson Health, in 2016, declared 
their partnership with Quest Diagnostics for IBM Watson 
Genomics. The aim of this initiative was the use of integrating 
cognitive computing and genomic tumor sequencing to make 
decision in medicine making [8], [9]. Another initiative called 
Google’s DeepMind Health was developed to address 
muscular degeneration in aging eyes [10].  
Medical Imaging- Diagnosis is a complicated process and 
involves various factors. InnerEye initiative started in 2010 by 
Microsoft is currently used as image diagnostic tool. With 
deep learning, more data sources contribute to AI diagnostic 
process and hence diagnostic applications become more 
accessible [11]–[16].  
Medical data collection- For the treatment of Parkinson’s 
disease and Asperger’s syndrome, ResearchKit by Apple 
allows users to access apps that evaluates their condition over 
time. IBM’s partnership with Medtronic handles data of 
diabetes and insulin in real time and is going to great lengths 
to acquire health data [17].  
Drug Discovery- Drug discovery is the emerging healthcare 
application using ML, with relatively straightforward 
economic value. IBM and Google have now started emerging 
in drug discovery and now being a part various host companies 
that are raising and making money with ML in the field of drug 
discovery [18][19].  
 
Robotic Surgery- Major attention in the field of robotic 
surgery has been given to da Vinci robot that allows surgeons 
to manipulate dexterous robotic limbs.  This device performs 
surgeries with fine details than human hand alone. Some 
systems involve computer vision, in order to identify distances 
or minute body parts [20]. 
Various applications of ML are gaining momentum for future 
applications with help of today’s funding and research focus. 
These may involve- personalized medicines depending on the 
patient’s medical history, genetic lineage, past conditions, diet, 
and stress level; automatic treatment or recommendation using 
a machine that could adjust a patient’s dose of medications by 
tracking their blood profile, diet, sleep, and stress; autonomous 
master robotic surgeries [5]. 

II. LITERATURE REVIEW 

A. Existing methods to detect dental caries 
 
Dental caries is a dynamic process which involves episodes of 
de-mineralization of enamel soon after tooth eruption. The 
conventional methods to detect the caries include visual 
inspection, tactile sensation and radiographs [21]. 
Consequently, various other detection systems have emerged 
in the recent years. The Visible Light- Enhanced Techniques 
work on the principle of light scattering.  These techniques 
contain three main systems of early carious detection that use 
different sources of light: FOTI (Fiber-Optic Trans-
illumination), QLF (Quantitative Light-Induced Fluorescence) 
and DiFOTI (Digital Image Fiber-Optic Trans-illumination). 

While FOTI (Figure 2a) is used for detection of proximal 
caries, QLF (Figure 2c & 2d) is majorly used for diagnosing a 
range of lesions and provides evidence as most promising 
technology to detect caries, as it provides advantage of 
detecting caries in closer correlation with changes in mineral 
content. Another method, Electronic Conductance 
Measurements (ECM) (Figure 3) uses fixed frequency (23 Hz) 
alternating current to monitor the dental caries detection 
including the presence and extent of caries, either from enamel 
or exposed dentine surface [22]. This method provides the 
results as bulk resistance of tooth tissue. The device consists of 
a probe, a substrate and metal bar. The probe acts as a source 
of current, while the tooth typically serves the purpose of 
substrate. 
A metal bar, contra-electrode, is held in patient’s hand. Some 
physical parameters such as the temperature of the tooth, tissue 
thickness and material hydration affect the ECM results. 
Alternatively, a similar application, Electrical Impedance 
Spectroscopy (EIS) scans a range of electrical frequencies and 
provides results in the form of capacitance and impedance. 
Digital radiography (Figure 4) is an enhanced diagnostic 
technique which is as reliable as conventional methods. 
Radiographic subtraction is a method in this regard, which is 
based on the principle comparing two radiographs of same 
object using their pixel values. It is a promising technique to 
detect caries and assessment of bone loss. Detection of 
occlusal decay is also done using DIAGNOdent (DD) (Figure 
2b), a Laser Fluorescence System. DD is incorporated with a 
655 nm diode laser that can detect non-cavitated, occlusal pit-
and-fissure caries at an early stage. This method provides a 
numerical value on two LED display, which is related to the 
suitability of restoration. Besides these techniques, Ultrasound 
Caries Detector (UCD) systems are capable of discriminating 
cavitated and non-cavitated lesions.  The major advantage of 
this technique lies in the reduced exposure of patient to 
ionizing radiation. Many studies have documented that UCD 
had higher sensitivity than the radiographs in diagnosis of 
proximal caries [23]. 
 

 
 

Fig. 2: (a)FOTI Equipment; (b) DIAGNOdent device; (c & d) QLF 
Systems [24]. 
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Fig.3: (a) ECM device and its application; (b) the machine; (c) the 
hand piece; (d) site specific measurement technique; surface specific 
measurement technique [24] 
 
 

 
 
 
Figure 4: Example of a subtraction of two digital bitewing 
radiographs. (a) Radiograph showing proximal lesion on mesial 
surface of first molar; (b) follow up radiograph taken 12 months later; 
(c) the areas of difference between the two films are shown as black, 
i.e. in this case the proximal lesion has become more radiolucent and 
hence has progressed [24] 
 
 
In recent years, Raman spectroscopy showed promising results 
in the detection of early dental caries. As stated already, the 
dental caries is portrayed by demineralization of 
hydroxyapatite crystals. Raman spectroscopy helps in 
characterization of hydroxyapatite crystals 
(Ca10(PO4)6(OH)2) [25][26]. Figure 5 demonstrates Raman 
spectroscopy of sound enamel and carious enamel. 
 
 

 
 
 
 
 

 
 
 
Figure 5: Raman spectroscopy of sound and carious enamel (Adapted 
from Ionita 2009) 
 

B. Shortcomings in the existing methods 
Each of the conventional methods used for detection of dental 
caries have various limitations and disadvantages. High 
intensity visible lights used in Visible Light-Enhanced Visual 
Techniques can cause reflection of light over the tooth surface, 
underlying dentine shade, and saliva layer refraction [27][28]. 
Moreover, penetration of light photons through dense 
hydroxyapatite disruptions. Laser Fluorescence Measurement 
has been ineffective in early detection of enamel defects due to 
small or inaccessible diagnostic probe [24]. Although digital 
radiographs have been effective in identifying different stages 
of decay, yet they are not reliable to detect caries at an early 
stage [28]. Additionally, inability of DD to determine the 
depth of lesions proved that fluorescence-based intra-oral 
devices cannot be considered as better devices for early 
carious detection [29]–[33]. 

C. Need for artificial intelligence in detecting dental caries 
Research in the recent past has established that a majority of 
dental caries are unable to be identified in routine examination 
including x-rays. While occlusal caries is easy to identify 
through a normal clinical examination or x-ray review, yet 
these detection methods are not reliable for a large percentage 
of caries, such as those below the surface of the tooth, 
interproximal caries, and root caries. 
An AI company, ParallelDots, Inc., started a cloud based AI 
application for cavity detection on dental x-rays. They named 
this new clinical device as Dentistry.AI [34]. The device 
contains thousands of bitewing radiographic images, that act as 
data set. In order to recognize patterns from these large data 
sets, AI algorithm is trained. The advantage of AI is its 
exposure to numerous data which improves its efficiency to 
perform a specific task [35]. 

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 3



AI makes better identification of caries by analyzing bone 
density. Correctly interpreting X-rays and 3D images requires 
a lot of experience, and AI assistant makes the job much easier 
as it has already viewed a millions of images. It holds the 
applications in caries detection, implants, periodontics and 
orthodontics. AI algorithm trained with thousands of X-rays 
attains a high level of accuracy in predicting the location of 
caries. This system is now being tested by dentists in clinics in 
investigational device study. Several such AI algorithms may 
be developed in order to provide better accuracy to dentists to 
detect early caries at a specific location [36]. 

D. Challenges in using AI for detecting dental caries 
The major shortcoming of a trained deep learning system is its 
limited data set in comparison to ever increasing dental 
problems. Furthermore, the pathway it follows to provide the 
results is unknown, i.e. regardless of its accuracy the AI device 
does not explain “how” it made the predictions. This problem 
is more challenging for dentist, where they won’t want to 
suggest surgical procedure to the patients without a firm 
understanding of how the device arrived at its 
recommendation. 

E. Aim of Work 

In the present study, we attempted to systematically 
review the accuracy of data for caries detection using 
Raman spectroscopy.  

This method is currently widespread because of its simplicity 
due to the absence of sample preparation. Contrastingly, IR 
spectroscopy requires laborious sample preparation. In the 
beginning, when Raman spectroscopy was acknowledged in 
the biomedical field for early caries diagnosis, a few 
disadvantages such as fluorescence from the organic tissues 
and absence of sensitive instrument were the major concerns. 
In the last decade, progresses in the advancement of Raman 
spectroscopy have increased significantly when contrasted 
with IR spectroscopy. All modifications that have been made 
in Raman spectroscopic imaging till now are specifically 
aimed to determine peaks in spectrum. These peaks can be 
further used as finger prints to distinguish the carious tissues to 
normal tissues. Various studies have identified that Raman 
spectra at 959 cm-1 was able to identify the extent of 
demineralization [25][37]. 

III. RESEARCH METHODOLOGY 

A. Search Strategy 
Different electronic databases were searched to do the relevant 
literature survey for the present systematic review. The 
databases that were investigated involved PubMed, EMBASE, 
and Wiley Online Library pertaining to the time frame of last 
37 years until present; 15th May 2018.  
For the purpose of performing the literature search the 
following set of single or combined keywords were used: 
Dental caries, Artificial intelligence, AI, Machine learning, 

ML, Raman spectroscopy, early detection of dental caries, 
identification of dental caries, Raman, dental, caries, detection. 
 

B. Description of Inclusion and Exclusion Criteria 
 
The inclusion and exclusion criteria for a particular study 
depend on the type of research studies to be included or 
excluded for systematic review. The various parameters that 
were important for our present study included the following 
inclusion and exclusion criteria: language of research papers, 
availability of full text articles, and type of interventions  
(Raman spectroscopy) to be used; conventional methods used 
for the early detection of dental caries; advantages and 
shortcomings of AI systems; sample size; and the types or 
modifications made to Raman Spectroscopy. 
 
1) Inclusion Criteria 

The below-mentioned set of inclusion criteria was 
designated to collect relevant information from various 
research studies fulfilling the aim of our present 
research: 

• Clinical research papers published in English language; 
• All the relevant studies were considered from the year 

1980 till 2017; 
• Literature involving early detection of dental caries; 
• Papers that specify the sample size used for the study; 
• Papers that contain clear description of the type of Raman 

spectroscopy used for carious detection; 
• Studies that have reported various parameters of Raman 

spectroscopy used for a particular study, such as 
central wavelength, optical power, system description, 
peak intensities and laser polarization or 
depolarization values; 

• Studies that report the advantages and shortcomings of AI 
systems for early detection of caries were included; 

• Research papers that present the findings of dental caries. 

2) Exclusion Criteria 

The various exclusion criteria used to reduce inclusion of non-
pertinent information sources were: 

• Foreign language published articles and half articles 
• Studies that use the existing AI techniques to 

identification of dental caries 
• Unavailability of data, such as type of clinical study and 

polarization/depolarization anisotropy data; 
• Studies that lack detailed information on parameters 

used in Raman spectroscopy for their research; 
• Reviews, meta-analysis, Systematic reviews, thesis and 

dissertations, letters, editorials, abstracts, unpublished 
studies, case reports, and small case series are rejected. 
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C. Selection of studies 

The initial search performed using the search strategy 
produced 575 results from various databases. Further, 
exclusion of articles that were presented in language other 
than English, those that did not contain information about 
Raman spectroscopy, or systematic review and meta-
analysis papers, thesis and dissertation, etc. led to final 
number of 72 articles. From these 72 articles, 50 relevant 
studies were selected for screening. Exclusion of articles 
from these was based on unavailability of full-text articles, 
and duplicate studies. Full-text articles that were found to 
be eligible for the present systematic review were a count 
of 43, from which 28 others were eliminated due to 
incomplete data or unrelated information. Finally, in order 
to understand the effectiveness of Raman spectroscopy in 
early detection of dental caries, a total of 15 out of these 
43 research studies were studied for the present review. 
The details of the study selection are demonstrated as a 
flowchart in Figure 6. 

 

 

Fig. 6: Flowchart of study selection. 

 
 
 

D. Data Extraction 

The research papers presented with significant 
information pertaining to Raman spectroscopy utilized in 
the research study and various parameters related to it. 
The following information was found to be important 
based on literature assessment and hence, these 
parameters were considered from each study: author’s 
name, year of publication, tooth samples, type of Raman 
spectroscopy, central wavelength, optical power, 
description of the system, scan rate, description of Raman 
micro-spectroscopy, Raman imaging, Raman peak, and 
Peak intensities of laser polarization direction. 
Furthermore, depolarization ratio and polarization 
anisotropy data of both sound enamel and carious lesion 
were also extracted. Due to distraction in structure of 
enamel, depolarization ratio provides information about 
vibrational mode assignment, and polarization anisotropy 
deviates the light path. This gives a clue for presence of 
dental caries and further diagnosis can be performed. 
However, due to unavailability of complete information in 
research articles, these parameters could not be used for 
analysis process. 

IV. SYSTEMATIC REVIEW 

The data for systematic review was extracted in order to 
understand the pros and cons of early detection of dental 
caries using different types of Raman Spectroscopy. Table 
1 shows the characteristics of the studies included in the 
present systematic review, wherein the data included 15 
studies in the time frame of 1980-2018.  

We observe that various types of Rama n Spectroscopic 
techniques have been used to detect early dental caries 
including, FT-Raman Spectra, Diode laser Raman 
spectroscopy, Optical coherence tomography, Polarized 
Raman spectroscopy, micro-Raman spectroscopy, Fibre-
optic coupled polarized Raman spectroscopy, Renishaw 
‘inVia’ Raman microscope, and dispersive Raman 
spectrometer. 

Apart from the parameters that have been described in 
Table 1, the depolarization ratio was observed in the 
range of 0.05 to 18, whereas these limits increased for 
carious lesions, with least depolarization ratio of 0.4. On 
the other hand, a decreasing trend in polarization 
anisotropy was observed when dental caries was detected, 
in comparison to sound enamel. 
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V. CONCLUSION 

The different research studies use varied system and central 
wavelength range that affects the result of each one of them 
differently. M. T. Kirchner et.al. (1997) reported that 
Quantitative measurements of organic to inorganic ratio can be 
determined from FT-Raman spectroscopy, in order to study the 
changes in dentine due to burial conditions. Different burial 
conditions must be tested for accurate analysis. This technique 
can thus be employed for analysis of not just whole teeth but 
may also be used for study of a fragment of tooth. Wieland 
Hill et.al. (2000) concluded from their study that carious 
lesions can be distinguished from sound hard tooth tissues 
using the difference in their near-IR Raman spectra. The near-
IR Raman spectra of carious tooth shows increased 
luminescence. Diode laser Raman spectroscopy has therefore 
proved to be efficient, fast and reliable method for detection of 
caries. Alex C.-T. Ko (2006) based their results, to 
discriminate sound enamel from carious lesion, on the 
difference between degree of Raman polarization anisotropy. 

Carious lesions produce decreased Raman polarization 
anisotropy or inversely high depolarization ratio. These results 
depend on 2 factors- scattering and degree of hydroxyapatite 
crystal orientation. This study provides the relevant data and 
major aspects of Raman spectroscopy. It claims to help in 
formulation of dental treatment plans as well as monitoring of 
lesion based on fluoride treatment during re-mineralization 
process. Michael G. Sowa et.al. (2006) also observed Raman 
depolarization ratio of the same intensity as by Alex C.T. Ko 
et.al. (2006). The technique demonstrated significant 
difference in depolarization ratio of sound and carious enamel. 
Measurements of depolarization ratio, attenuation coefficient 
and OCT provide better understanding and detection of caries 
at an early stage. Fiona Gilchrist et.al. (2007) supported their 
Raman spectroscopic data with scanning electron microscopy. 
This confirmed that these two techniques can be together used 
to understand the presence or absence of eroded carious 
lesions on the primary and secondary teeth specimen. The 
study provides significance of the technique to analyze mineral 
concentration in teeth. Alex C.-T. Ko et.al. (2008) reported 
that fibre-optic coupled polarized Raman spectroscopy is an 
effective tool to detect dental caries at an early stage. This 
technique provides a single spectrum with complete of 
information about parallel as well as cross-polarized Raman 
spectra simultaneously. The method is highly sensitive and its 
specificity in micro-spectroscopic analysis makes it a better 
tool than other methods. Hamideh Salehi et.al. (2012) 
demonstrated the emergence of fluorescence variation of 
dental caries and reported that no significant correlation was 
observed between Raman spectra characteristics, fluorescence 
variation and HPLC assay. B. Mohanty et.al. (2012) provided 
results stating that surface layer may lead to less chances of 
detection demineralized sub-surface region. This study 
presents a limitation of using Raman spectroscopy for early 
detection of dental cavities. Another study by A. Almahdy 
et.al. (2011) provided an evidence that the non-invasive 
technique of micro-Raman spectroscopy can detect caries in 
different dentine zones, without unnecessary tissue removal 
procedure. B Coello et.al. (2015) demonstrated the clinical 
reliability of quantitative Raman spectroscopy by examining 
two case studies, which successfully identified demineralized 
dental tissues. Fabíola Bastos de Carvalho et.al. (2013) 
presented a comparative study of DIAGNOdent and Raman 
spectroscopic data for detection of carious lesions, and further 
reported that Raman spectroscopy is a better and more 
sensitive technique, as it identifies changes in inorganic 
components of tooth samples. T. Buchwald et. al. (2017) 
analyzed three independent phenomena, i.e. Raman scattering, 
Rayleigh scattering and fluorescence emission for detection of 
caries. They presented Raman spectroscopy as a new 
diagnostic tool for detection of carious lesions. 

Raman spectroscopic data has proved in all these studies to 
effective for various reasons. First of all, minimal or no sample 
preparation is required for detection of caries using Raman 
spectroscopy. Second, studies by M.T. Kirchner, et.al.(1997), 
Alex C.-T. Ko, et.al. (2006) and Alex C.-T. Ko, et.al. (2008) 
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indicated maximum number Raman peak intensities 
corresponding to different functional groups, hence providing 
more information than other studies, described above. Also, 
these studies provide a better understanding of Raman 
spectroscopic data to detect dental caries. However, each of 
these methods require further in vitro analysis. 
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